Cholera: Death by Diarrhoea
Cholera - an overview
Cholera is an infectious disease, caused by the bacterium *Vibrio cholerae*, which affects the transport of water in the small intestine. The bacterium secretes a toxin, cholera toxin (CT), which causes severe fluid loss from the body into the digestive tract, leading to dehydration and ultimately death by diarrhoea.

V. cholerae has caused seven worldwide disease outbreaks or pandemics since 1817, killing millions of people and infecting millions more - including four epidemics in the UK accounting for approximately 55,000 deaths.

Southeast Asia witnessed the first cholera epidemic in 1817, though the condition of ‘dehydrating diarrhoea’ was mentioned around the time of Hippocrates (460-377 BC). Today, cholera is prevalent in Central and South America, Africa and Asia, though not in the UK as it is usually confined to countries with a poor sanitation infrastructure. Worldwide, 100,000-300,000 cases of the disease are reported each year with more than 94% of cases in Africa. However, this is likely to be a massive underestimate as many countries in the Indian subcontinent and Southeast Asia do not report the incidence of cholera; for example, no cholera cases have been reported in Bangladesh, although estimates suggest that there may be as many as 1 million cases per year. Realistic worldwide estimates suggest 120,000 annual deaths with 3-5 million people suffering from the disease.

Cholera - a history
Prior to 1850, it was thought that cholera was caused by breathing in bad air - *miasma* - and that protection was offered by strong smelling substances such as herbs and camphor. John Snow, a prominent London physician, was heralded as the *Father of Cholera* when he questioned the miasma theory after treating a number of cholera patients.
but not succumbing to the condition himself. Snow argued that disease must have entered the body through the mouth on infected food or drink and not via the lungs, after observing that patients became ill with symptoms originating in the gut such as vomiting and stomach ache. He hypothesized that a ‘poison’ was ingested which reproduced in the digestive tract and, in 1849, he published his ideas, at his own expense, in a pamphlet called On the Modes of Communication of Cholera. Snow was able to prove his theory in 1854 when he carefully mapped the incidence of cholera during the London 1853-1854 outbreak. Believing that the source was a water pump in Broad Street, Soho, he examined water from the pump under the microscope and described the occurrence of ‘white flocculent particles’. Convinced that these particles were the source of the disease he persuaded the authorities to remove the pump handle; at this time, the number of cholera cases locally was already in decline, though it is thought that Snow’s conclusions provided the basis for further preventative measures. John Snow never identified the bacterial source of infection; however, through data gathering and statistical analyses, he suggested that the water was the reservoir of infection and the mode of transmission. His recommendations of improved hygiene and boiling of drinking water mostly went unheeded by those who did not support his claims as the ‘germ’ responsible for cholera had not yet been observed microscopically.

In the same year that Snow made his observations an Italian anatomist, Fillipo Pacini, published a paper entitled Microscopical Observations and Pathological Deductions on Cholera describing the causative agent of cholera and suggesting treatment options. However, the preferred theory in Italy at that time was that of miasma and as such Pacini’s work went unnoticed.

A German bacteriologist, Robert Koch, suggested in 1882 that cholera was caused by a bacterium and that this bacterium secreted a toxin which caused rapid water loss. Koch observed faecal samples and identified a comma-shaped bacillus, which he called Vibrio cholerae after its vibrating wiggles. Having already made his mark on bacteriology with his work on anthrax and tuberculosis, and his postulates (see page 11), which generate a formal proof that a certain micro-organism causes a disease, his ideas and observations on cholera were well received. Pacini was recognized for his work posthumously as the organism was officially named Vibrio cholerae Pacini 1854.

What causes cholera?
Cholera is caused by the curved, rod-shaped bacterium Vibrio cholerae. There are more than 100 species of Vibrio, only a few of which are pathogenic to humans. They are free-living bacteria that are commonly found in brackish waters. Vibrio cells are motile, propelled by a single polar flagellum and, as they normally live in neutral or
alkaline conditions, they are sensitive to acidic pH. The bacterial cells are tiny, about one five hundredth of a millimetre long, which means that 20 or more cells would fit across the diameter of a human hair.

Getting there…
Cholera infection results from the ingestion of contaminated food or water. To survive the journey through the digestive tract, the bacterium has to be well adapted.

Passage through the digestive tract:
Entry to the body: V. cholerae cells enter the body and make their way through the digestive system. Approximately two-thirds survive the acidic conditions of the stomach; survivors conserve energy until they enter the small intestine where they begin production of their flagella. The flagellum, which is a long tail-like structure, propels each Vibrio cell forward through the mucus layer to the intestinal wall. V. cholerae also produces enzymes that digest the layers of mucus, which helps with access to the epithelial cells lining the intestine, as well as detachment from cells that are being lost due to the body’s defence mechanisms. To conserve energy, on reaching the intestine wall, the bacterial cells stop flagellum production, as propulsion is no longer required, and energy is refocused on the production of hairlike appendages called frimbriae or pili which are formed on the bacterial cell surface. These structures are made of protein and allow the bacteria to attach to the lining of the intestine.

Growth: For symptoms to persist, the bacteria must continue to multiply in the intestine.

Colonisation and invasion: When they reach the small intestine, the bacteria must ‘hold on’ and resist the normal transit motions of this region. They do this using their fimbriae or pili. Once attached, the bacteria invade the host cell. Production of CT is the final stage in pathogenesis.

Causing trouble…
The period between ingestion and a patient showing symptoms (incubation period) is usually very short and can be as little as 2 hours, although it can take up to 5 days. Most people (75%) infected with V. cholerae don’t have any symptoms (asymptomatic); however, they remain carriers of the disease, excreting the bacteria in their faeces, usually for two weeks but occasionally for several years as in the case of ‘Cholera Dolores’.
Cholera Dolores
Asymptomatic cholera infection is unlikely to last more than two weeks; however, long-term carriers have been reported, though they are extremely rare. During the Philippine epidemic of 1962, Dolores, a housewife, suffered a mild attack of cholera while pregnant with her sixth child, and was hospitalised though not treated with antibiotics. It is thought that she contracted cholera from eating contaminated seafood which her husband brought from nearby Bacolod city. Several members of Dolores’ family showed symptoms of cholera, though none needed hospitalization. Dolores intermittently excreted the bacterium over 11 years, so had the potential to cause further infection although this was never observed in her locality. This is possibly due to the fact that she lived in an area where cholera was endemic. Little more is known of this case except that V. cholerae was resident in her biliary tract; it is unknown what factors contributed to Dolores being a carrier for such a long period of time. In 1973, Dolores’ carrier state was resolved spontaneously.

Different types of V. cholerae infection
Over 100 serogroups (organisms grouped on the basis of their cell surface antigens) of V. cholerae exist; however, only two cause epidemic cholera. They are serogroup O1 and serogroup O139. Serogroup O1 can be classified further based on phenotype into El Tor and Classical; these are referred to as biotypes. El Tor is the infective agent responsible for the current pandemic; Classical has not been identified since the mid-1990s. V. cholerae O1 biotypes can be further classified into serotypes based on the results of a serum agglutination test; there are three O1 serotypes, Inaba, Ogawa and Hikojima. V. cholerae O139, a relatively new serogroup, has not reached pandemic potential so far, though its occurrence is being closely monitored as its pattern of infection and capacity to survive in water, suggest that it may be both more infectious and more virulent than V. cholerae O1.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>V. cholerae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serogroup</td>
<td>O1</td>
</tr>
<tr>
<td>Biotype</td>
<td>El Tor</td>
</tr>
<tr>
<td>Serotype</td>
<td>Inaba</td>
</tr>
<tr>
<td></td>
<td>Hikojima</td>
</tr>
<tr>
<td></td>
<td>Ogawa</td>
</tr>
</tbody>
</table>

It is worth noting that the gene for CT is carried on a bacteriophage (a virus that infects bacteria) inside V. cholerae. So, in theory, if this virus were more mobile it might be possible for a new serotype to emerge again in the future, just as O139 has done quite recently.

Molecular model of the secondary structure of cholera enterotoxin
Symptoms

Most people with cholera are asymptomatic and, of those that do develop symptoms, 80% have mild diarrhoea which is difficult to distinguish from that caused by other pathogens such as viruses. However, all of these people carry *V. cholerae*, excrete it and can spread it to others. Severe cholera (cholera gravis), which accounts for fewer than 10% of cases, is characterized by the

- Rapid onset of violent watery diarrhoea. The diarrhoea is ‘straw coloured’ with flecks of mucus and is often described as resembling rice water

Vomiting

Extensive dehydration

Leg cramps

As fluid is lost, the blood thickens and the skin becomes blue-grey in colour; patients also begin to suffer lethargy, a lack of consciousness, confusion and occasionally fever. It is this rapid dehydration - as much as 1 litre of fluid can be lost every hour - which can prove fatal within 24 hours of developing the disease. In children, the rapid loss of fluid can lead to severe salt imbalance, which can cause convulsions and cardiac arrest in addition to the symptoms described. The fatality rate in untreated cases can be as high as 30-50%. If patients are given rehydration therapy, then the death rate is below 1%

Laboratory methods for diagnosis of *V. cholerae*

Many diseases cause diarrhoea; however, the production of frequent watery stools requires faster treatment due to the high risk of dehydration. Looking at a stool sample under the microscope can help the medical practitioner make a diagnosis, however, this is of little use to patients as those with any diarrhoeal disease receive the same treatment, i.e. fluid and electrolyte (salts and sugars) replacement.

Conventional culture methods are the ‘gold standard’ for diagnosis of *V. cholerae*. Stool samples or rectal swabs are plated on TCBS (thiosulphate citrate bile salts) agar (*V. cholerae* colonies appear yellow as they ferment glucose). Suspected colonies are selected for further analysis with biochemical and serological tests such slide agglutination.

In cholera endemic areas, where laboratory facilities are often limited, rapid immunochromatographic dipstick test can be used to diagnose cholera. It is very simple to use, the dipstick is dipped into a stool sample. If two red lines appear on the dipstick, then the patient has cholera, if only one red line appears, the test is negative. It takes between 2-15 minutes for the test to develop.
Treatment focuses on fluid replacement as water alone is not easily absorbed by the body. The World Health Organization (WHO) recommends clean water and rehydration salts to restore electrolyte balance. Oral rehydration therapy (ORT) employs rehydration salts, which are readily available in pharmacies; these are often in short supply in areas of high infection rate. ORT has been revolutionary in cholera treatment and, if properly used, it hugely reduces both the need for hospitalization and mortality. Some cases may be treated with antibiotics, although generally the individual’s immune system is left to destroy the pathogen. In extreme cases, Hartmann’s solution (a solution of sodium, chloride, lactate, potassium and calcium ions, which is isotonic with blood) is administered by intravenous injection to replace body fluids and mineral salts.

Retrospective diagnosis can be performed by analysis of the blood for antibodies against *V. cholerae* and CT. Although identification of *V. cholerae* is not often used in treatment, this information helps to prevent further outbreaks.

Transmission of cholera
Cholera infection requires a large dose of bacteria and is transmitted by the faecal-oral route, for example by drinking from a water supply contaminated with infected excrement. The bacteria can also be spread to food if infected people don’t wash their hands thoroughly after going to the toilet and before food preparation. Infection is often noted after the funeral of a cholera victim where contamination occurs as a result of poor hygiene in food preparation.

The environment can also be a reservoir of infection as the bacteria are present in brackish waters, often in association with aquatic organisms at a low level, and sometimes in an un-culturable state. Shellfish living in contaminated water can transmit cholera too. They are filter feeders and, as they strain the water for food, the bacteria become concentrated inside them. Anyone consuming shellfish that are not properly cooked can become ill.

Treatment
Treatment of the symptoms of cholera focuses on fluid replacement as water alone is not easily absorbed by the body. The World Health Organization (WHO) recommends clean water and rehydration salts to restore electrolyte balance. Oral rehydration therapy (ORT) employs rehydration salts, which are readily available in pharmacies; these are often in short supply in areas of high infection rate. ORT has been revolutionary in cholera treatment and, if properly used, it hugely reduces both the need for hospitalization and mortality. Some cases may be treated with antibiotics, although generally the individual’s immune system is left to destroy the pathogen. In extreme cases, Hartmann’s solution (a solution of sodium, chloride, lactate, potassium and calcium ions, which is isotonic with blood) is administered by intravenous injection to replace body fluids and mineral salts.
Physiological differences affecting infection

Cholera infection can be spectral in that symptoms can vary with dose, serogroup, biotype and serotype, though physiological variation between people can also play a part. It is thought that those who have reduced or nonexistent stomach acid due to disease or ailment are more susceptible to cholera. In a healthy individual, the stomach acid acts as a first-line of defence against infection and kills many *V. cholerae* cells before they travel to the intestine. Another possibility for physiological variation among infected individuals may be the availability of surface receptors for CT on the host cell surface, though this has not been proven.

Vaccines and immunity

Oral vaccines show long-lasting protection against cholera with few side-effects, although they provide insufficient protection for children under 2 years of age. Vaccines however are only advised for preventative use rather than as a method for
controlling outbreaks and should be used in tandem with standard prevention and control measures. Also immunity, natural or artificial, is serogroup-specific; for example immunity provided against *V. cholerae* O1 does not protect from O139. WHO recommends vaccination for people occupying slums or refugee camps due to high density populations and increased risk of disease spread.

In 1894, soon after Koch’s identification of cholera, an injectable, whole-cell, killed vaccine, was developed that induced 48% protection for three months against *V. cholerae*, serotypes Inaba and Ogawa. The vaccine, initially trialled in India, was never endorsed by WHO, although it may still be available in some countries.

Effective oral vaccines available against cholera:

- **WC/rBS (Dukoral)** – this is a whole-cell, killed *V. cholerae* O1 vaccine with part of the CT protein. Trials have shown high levels of protection (85-90%) over a period of 6 months for 2 doses of the vaccine in all age groups, though protection declines after 6 months in young children and remains at about 60% in older children and adults after 2 years. Protection is provided against *V. cholerae* O1 serotypes Inaba and Ogawa, and biotypes Classical and El Tor. Dukoral also provides short-term protection against *Escherichia coli* enterotoxin, which is of added benefit to travellers.

- **Variant WC/rBS** – a cheaper version of the WC/rBS vaccine which does not contain any CT; it has been shown to have an efficacy of 66% after 8 months in all age groups. This vaccine is only licensed in Vietnam.

- **CVD 103-HgR (Orochol)** – this vaccine consists of an attenuated, live, genetically modified *V. cholerae* O1 Inaba strain that has been engineered to produce part of the CT. It confers high protection (95%) against O1 (Classical and El Tor) in virgin volunteers, i.e. those not previously exposed to the bacterium. Protection in endemic regions has not been shown in an effective trial, though retrospective studies have shown protection in an ongoing outbreak in Micronesia, a group of islands in the Western Pacific. Orochol is the only vaccine available as a single dose, which, due to administration logistics, is more viable for pre-emptive and long-term outbreak control in ongoing field conditions according to WHO. However, due to a lack of evidence for its effectiveness, the vaccine was withdrawn in 2004.

Protective immunity in those exposed to cholera is induced almost exclusively by antibodies produced in the intestine. These antibodies prevent bacterial colonisation and multiplication, and they inactivate the CT. Immunoglobulins IgA, IgG and IgM have all been detected, although IgA is the most important. The antibodies prevent the CT from binding with receptors on the cell surface. Natural immunity is provided by IgM followed by a switch to IgG. There is a 3-year period post infection where patients remain immune to cholera as a result of acquired, natural immunity.

In areas where cholera is endemic such as Bangladesh, infection rates are low among adults when compared to the children in the same area, whereas in areas where new epidemics arise rates are higher in the adult population. This discrepancy illustrates a resistance linked to the presence of circulating vibriocidal antibodies to cholera.
Future

Current research into cholera is focused on understanding the CT itself. Another area of anti-diarrhoeal research is development of a pill that will prevent the diarrhoea post-infection. Two drugs, chlorpromazine and nicotinic acid, have been shown to be effective in animal models, though the mechanism is yet to be understood. Research continues into vaccine development against both O1 and O139 serogroups; several potential new vaccines are currently in clinical trials in Bangladesh, India and Thailand.

Education

In order to control and ultimately stop the spread of a cholera outbreak, community education is paramount. Many of the basic hygiene messages, while perhaps simple to relate, are often difficult to implement due to cost. Therefore, alternative solutions are required to limit transmission, for example WHO suggests the addition of lime juice to food and water to inactivate *V. cholerae*. Ideally in communities most affected by cholera, awareness campaigns continue throughout the year increasing in frequency as the cholera season approaches. Clear information is presented with messages adapted for cultural, social and economic circumstances, and the information is delivered graphically, by radio broadcast or as talks in areas where people are waiting or congregated.

Further information

- CDC - www.cdc.gov/nczved/divisions/dfbmd/diseases/cholera/
- Net Doctor - www.netdoctor.co.uk/travel/diseases/cholera.htm
- Textbook of bacteriology - www.textbookofbacteriology.net/cholera.html
- WHO - www.who.int/topics/cholera/en/
Koch’s postulates

Robert Koch developed a set of postulates for proving that a specific micro-organism causes a specific disease.

- **Postulate 1:** The suspected pathogenic micro-organism should be present in all cases of the disease and absent from healthy individuals [this postulate is often disregarded as, in the case of cholera for example, it is possible to be a carrier and not show symptoms of the disease (asymptomatic)].

- **Postulate 2:** The suspected micro-organism should be grown in pure culture (note the correct medium must be selected for successful culture).

- **Postulate 3:** Cells from a pure culture of the suspected micro-organism should cause disease in a healthy animal.

- **Postulate 4:** The micro-organism should be reisolated and shown to be the same as the original.
The Society for General Microbiology (SGM) is a professional body for scientists who work in all areas of microbiology. An important function of the Society is the promotion of the public understanding of microbiology. SGM produces and distributes a wide range of resources to support microbiology teaching in schools and colleges across all key stages and post-16. It also runs training courses in practical microbiology for teachers and technicians, and occasional workshops. The Society also offers an information service to teachers and participates in schools competitions and other activities.

School Membership of the SGM offers many benefits including:
- *Microbiology Today*, the award-winning magazine
- Discounts on SGM INSET courses
- Priority mailings of SGM teaching resources

Contact
SGM, Marlborough House, Basingstoke Road, Spencers Wood, Reading, RG7 1AG, UK
T: 0118 988 1800
F: 0118 988 5656
E: education@sgm.ac.uk
W: www.microbiologyonline.org.uk

Cholera: Death by Diarrhoea

Written by Vicki Symington
Designed by Dariel Burdass
Edited by Dariel Burdass
Proof read by Susan Andrews

Acknowledgements
Thanks are due to Professor Charles Penn (University of Birmingham) for his helpful comments on this text. Every care has been taken to ensure that the information is correct, but the author will be pleased to learn of any errors that have remained undetected.

Picture credits
Front cover, EYE OF SCIENCE / SPL*, p.2 top half, THONY BELIZAIRE / GETTY IMAGES, p.2 lower right, NATIONAL LIBRARY OF MEDICINE / SPL, p.3 bottom left, SPL, p.3 upper right, LIBRARY OF CONGRESS / SPL, p.4 top half, JIM DOWDALLS / SPL, p.5 bottom half, DR MARK J. WINTER / SPL, p.6 middle, KAREN KASMAUSKI / GETTY IMAGES, p.7 top half, PETER MENZEL / SPL, p.8 middle, THINKSTOCK, p.10 top half, MAURO FERMIARIELLO / SPL, p.11 upper right, WELLCOME TRUST IMAGES, p.11 bottom half, USA LIBRARY OF CONGRESS / SPL *SPL, Science Photo Library

Copyright
Cholera: Death by Diarrhoea is copyright. The Society for General Microbiology asserts its moral right to be identified under Section 77 of the Design, Patents and Copyright Act, UK (1988).

Educational use: Electronic or paper copies of the resources or individual pages from it may be made for classroom use and bona fide educational resources, provided that the copies are distributed free of charge or at the cost or reproduction and the SGM is credited and identified as copyright holder.

© 2011 Society for General Microbiology